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Chapter 1

Introduction

Radiolocation is the process of finding the location of something through the use of radio

waves. A common approach measures the distance to an emitter by using the difference

in the power of the received signal strength (RSSI) when compared with the originating

signal strength. Another approach to calculate the distance uses the time of flight from

emission to reception [17]. Data from multiple emitters at different known locations

are then combined to estimate a position. Radiolocation has many applications from

navigation to tracking objects.

Traditionally GPS is used to provide radiolocation outside with successful results;

however in some environments such as the rainforest this provides inaccurate results due

to environmental factors. This project aims to build a Bluetooth low energy (BLE)

localisation system to produce more accurate results. It will also evaluate the performance

of the implemented models against baseline algorithms.

1.1 Motivation

As the world tries to slow the speed of climate change, deforestation is having a detrimental

impact on carbon emissions. This has been seen in recent years with deforestation being

one of the contributing factors to the Amazon rainforest being turned from a carbon sink

into a carbon source [14]. It is more important than ever to protect our natural resources

from destruction. Some research suggests that supplying indigenous communities with

satellite data we can significantly reduce illegal deforestation and mining in the Peruvian

Amazon rainforest[20]. By enabling communities to accurately map important resources

we may be able to help restrict further damage to the environment. Precise mapping is

also useful to measure field plots in environmental science.

Global Navigation Satellite Systems (GNSS), such as GPS, have allowed for accurate,

positioning outdoors, but the environmental conditions of rainforests means that accuracy

is reduced leading to a positional error in the range of 10-30 metres for GPS [12]. The

radio signals emitted by the satellites are too weak to penetrate the dense vegetation and

this combined with the high humidity environment makes it difficult to get an accurate

location fix.

This low accuracy is insufficient to conduct fieldwork, so an alternative positioning

1



2 CHAPTER 1. INTRODUCTION

method must be used to provide better accuracy. GPS signals are also unable to provide

accurate location fixes indoors, this is due to the construction materials reducing signal

penetration and electromagnetic interference from personal computing devices. These

factors produce an environment quite similar to a rainforest. This project aims to apply

techniques used for indoor positioning to build a system for outdoor localisation which is

more accurate than GNSS systems in harsher environmental conditions such as rainforests.

1.2 Challenges of the Project

Radio signals are particularly susceptible to noise. This makes creating a mapping system

from them complex due to the variation in signal strength values. Smoothing these values

can be computationally expensive.

Another challenge was that I had no previous experience programming with wireless

signals. This lack of experience meant I had to quickly learn about the field.

1.3 Previous Work

Positioning is a mature field, with many proposed techniques and technologies. In this

section we will focus on radio positioning, first with a quick look at time of flight systems

(ToF). Then Radio signal strength (RSS) based signals with a specific focus on empirical

fingerprinting.

1.3.1 Time of Flight

Time of Flight based methods work by having time-synchronised emitters or beacons at

known locations and a receiving device we want to locate. The emitting device emits a

signal to the receiving devices with a precise timestamp. The time difference between

emission and reception relates to the distance between the two and can be used to locate

the receiver using a method such as trilateration or the min-max method.

δd = cδt (1.1)

where c is the speed of light.

Figure 1.1: Time of Flight diagram: One-way range measurement(Synchronised Clocks)

Trilateration can be used to estimate a device’s location, it creates a circle (2D) or

sphere(3D) around each beacon, with a radius proportional to the estimated distance, the
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intersection of the circles or spheres is then the estimated position. You need at least 3

beacons in 2D and at least 4 in 3D.

Figure 1.2: 2D Trilateration example

GPS and other GNSSs are examples of a ToF system with moving satellite trans-

mitters. Ultra-wideband positioning is also a notable example of ToF which can work

indoors. However, its high cost makes it expensive to build a positioning system with at

this point in time [11].

1.3.2 Radio Signal Strength

Radio Signal Strength positioning methods use the difference in the power of the received

signal strength (RSSI) as compared to the known originating signal strength.

Proximity

The simplest method is proximity based. This method uses the position of the beacon

with the largest collected RSSI value to approximate the position.

Fingerprinting

Here positioning is performed using a previously constructed radio map. This has been

shown to provide more accurate results than proximity-based systems [8]. This has his-
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torically been used with Wi-Fi signals [5], but in the last few years location fingerprinting

with Bluetooth low energy beacons for use indoors has been explored.

In 2015 Robert Harle and Ramsey Faragher from the University of Cambridge demon-

strated how location fingerprinting can be done with Bluetooth low energy beacons. In

there implementation they used Gaussian process regression to estimate continuous sig-

nal maps from discrete BLE RSS data, they then sampled this map at to form a grid

of points, before selecting the most likely point. [8] Other algorithms have been shown

to work for indoor fingerprinting including K Nearest Neighbour regression (KNN) and

Weighted KNN regression (WKNN) [19]. These methods are based off the ’distance’ of

RSS values from training points. They then use the lowest k distances to calculate an

estimate.

Filtering

RSSI values have a lot of process noise. Smoothing these values can make them more

suitable for use in positioning. There are a variety of filtering techniques from simple

moving average filters [13] to particle filters [21]. Filters have also been used to incorporate

past position estimates to to inform the most likely next position estimate.

Filtering algorithms attempt to use noisy/partial data to estimate the current value.

This data consists of current and past observations. Different filtering methods have

varied effectiveness based on their complexity with more complex filters often providing

better results at the cost of performance[13].



Chapter 2

Preparation

This chapter introduces the core ideas behind the frameworks used in this project. It also

discusses how radio signals can vary in strength. A detailed requirements analysis and a

discussion of the tools used for the implementation are also included.

2.1 Concepts

This section is designed to give the reader a brief introduction to radio-based positioning

before giving an overview of the Gaussian process model in the context of RSSI-based

positioning.

2.1.1 Radio Signal Strength

Radio signal strength refers to the power output received by a reference antenna. In low

power systems such as Bluetooth, the beacons signal strength is expressed in decibels

below a reference level of one milliwatt (dBm).

Received signal strength (RSS) is the strength of a received signal measured at the

receivers’ antenna. Received signal strength indicator (RSSI) quantifies this. RSSI is an

indication of the level of power received by the receiving radio after antenna and cable

loss. The greater the RSSI value the stronger the signal. RSSI values are commonly

expressed in negative form (e.g -42 dBm = 10−4.2mW), the closer the value to 0, the

stronger the received signal is.

RSSI and Distance

Path loss is the decline in power density of an electromagnetic wave as it propagates

through space. By modelling path loss, we can link distance to signal power and hence

RSSI.

A common way of modelling this is the log-distance path loss model. Below is the

equation for this model where r is the estimated received power, ro is the received RSSI

at a point p in dbm, γ is the path loss exponent, d is the distance of the mobile device

from the transmitter, and d0 is the distance from the transmitter to point p. Point p can

5
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be any known position provided the distance to the transmitter and the RSSI value at

the point are known (d0 and r0 respectively).

Figure 2.1: log-distance model setup

r = r0 − 10γ log10(
d

d0
) (2.1)

This can then be rearranged to get an estimate for distance from the receiver:

d = d010
r0−r
10γ (2.2)

2.1.2 Fingerprinting

An RF-based fingerprinting method can usually be broken down into two phases: offline

and online [15]. During the offline stage the environment is surveyed. This involves ob-

taining the location coordinates and respective signal strengths from the nearby beacons.

During the online stage a location positioning technique uses the currently observed (live)

signal strengths and the training data to estimate the location of a target device.

Figure 2.2: Standard fingerprinting algorithm overview

2.1.3 Localisation algorithms

Localisation algorithms take a live signal measurement and the training data and return

an estimate for the location of the target device. Many of these algorithms use a model to

calculate distances between known points and the target position. Once these distances

have been obtained you can then use several methods to estimate the target position. A

few of these are discussed below.
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Figure 2.3: General setup for 3 known points, di is the distance between the target device

and a known point

Min-Max Method

The min-max or bounding-box method takes distance estimates and their corresponding

known positions. The target node then constructs a bounding box around each reference

node, where the reference node is at the center of the box and the box length is 2di, where

di is estimated distance between the point xi and the target device. The target node

determines the intersection of these boxes with its boundaries given by xmin, xmax, ymin

and ymax. The center of the intersection box is then the estimated target position. [22]

xmin = max1<=i<=n(xi − di)

ymin = max1<=i<=n(yi − di)

xmax = min1<=i<=n(xi + di)

ymax = min1<=i<=n(yi + di)

xest =
(xmin + xmax)

2

yest =
(ymin + ymax)

2



8 CHAPTER 2. PREPARATION

Figure 2.4: Simple 2D bounding box example

Weighted Centroid Localisation

The Weighted Centroid Localisation (WCL) method estimates the target position by

calculating the weighted centroid of the coordinates of the reference nodes at known

positions. The weight are created such that a larger weight means that a reference node

contributes more to the position estimate. In the case of distances this means that wi and

di are inversely proportional[22]. If only one known point is used it assigns the estimated

position to that point.

xest =
n∑

i=1

wi × xi∑n
i=1wi

(2.3)

wi =
1

di
(2.4)

2.1.4 Filters

Filters reduce statistical noise and other inaccuracies and produce an estimate of unknown

variables. This tends to be more accurate than a single measurement on its own.
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Figure 2.5: General operation of a filter

Simple Moving Average Filter

This filter is the unweighted mean of the previous k data-points. This is cheap to compute

with a FIFO buffer of size k.

SMAk =
1

k

n∑
i=n−k+1

pi (2.5)

Kalman Filter

The Kalman filter produces an estimate of the systems state as an average of the system’s

predicted state and of the new measurement using a weighted average. These weights allow

values with smaller estimated uncertainty to be ”trusted” more. Covariance, a measure

of estimated uncertainty in a state, is used to calculate the weights. The result of the

weighted average is the next state estimate. The covariance is updated each iteration.

This filter only requires the last estimate compared to the entire history in some methods.

The Kalman filter is optimal assuming that errors have a Gaussian distribution and if the

process and measurement covariances are known, the Kalman filter is the best linear

estimator in regard to minimum mean-square-error[10].

This model assumes the true state at time k evolves from the state at (k−1) according

to the below model:

xk = Fkxk−1 +Bkuk + wk (2.6)

Where Fk is the state transition model that is applied to the previous state xk−1, Bk is

the control-input model which is applied to the control vector uk, which represents the

controlling input at time k. wk is the process noise, which is assumed to be drawn from

a zero mean multivariate normal distribution.

At time k an observation zk of the true state xk is made using the below equation:

zk = Hkxk + vk (2.7)

Where Hk is the observation model, this maps the true state space into the observed

space and vk is the observation noise, which we assume is a zero mean Gaussian white

noise.
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Many systems are not linear however, but generalisations such as the Extended Kalman

filter have been developed for non-linear systems, but these are not optimal estimators

for non-linear systems.

When applied to signal strength measurements we only need a 1D Kalman filter.

2.2 Factors affecting signal strength

Various factors lead to the variance in signal strength at points. By understanding these

factors we can build better positioning systems by informing our algorithm design choices.

For example introducing filtering of RSSI values or how to position a beacon to provide

the best range. A few of these factors are discussed below.

2.2.1 Flight Path Interference

Body Interference

Radio waves cannot pass through electrical conductors such as water and metals. As a

significant percent of the human body is water(around 50-65% for men) it follows that a

body cutting through a radio wave will lead to lower RSSI value [22].

Multi-path interference

Multipath interference occurs when a radio signal from a transmitter arrives at a receiver

via two or more routes. This can be caused by a variety of factors such as atmospheric

ducting, reflection and refraction. Multipath interference may cause a radio signal to

become too weak in certain areas to be received. This effect is more prevalent indoors,

due to the number of walls. In the rainforest this can occur when signals reflect off water

particles in the humid air.

2.2.2 Emission power

The emission power is directly proportionate to the RSSI value meaning that a higher

emission power will lead to an increase in the RSSI value.

2.2.3 Antenna Position

The position of the antenna can affect the RSSI values. If the antenna is directional,

this can lead to varied measurement depending on the rotation. To investigate this I

performed an investigation into how rotation of the antenna affects the RSSI values at 1

m from the receiver. To set up this experiment I had a beacon indoors 1 m from the target

device, the only changing variable was the rotation of the beacon and the time (Appendix

2). The below figure demonstrates how the different angles have notably different average

RSSI values. This change may be due to multipath interference. From the experiment I

was able to ensure to implement more measures in the evaluation such as ensuring the

beacons were at level heights and keeping the beacon positions constant throughout.
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Figure 2.6: Figure demonstrating how the angle affects the RSSI value (Appendix 2)

2.2.4 Noise in measurements

Even if we do not move our devices or interfere directly with the signal the strength would

not be constant. This comes from electromagnetic noise.

Figure 2.7: Figure demonstrating the variance in RSSI readings over time at 1 m from

transmitter (Appendix 2)

2.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless communication protocol that has been designed

for low power operation. It uses 40 channels, each 2 MHz in width and uses the 2.4

GHz radio band [8]. The protocol consists of short duration messages which reduces
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battery consumption compared to Bluetooth Classic. Messages in BLE are either data or

advertisement messages.

Advertisement messages are broadcast messages that are used for device discovery and

contain a payload such as the current sensor state. Advertisement messages are needed

to enable communication between two devices. This makes them useful for dedicated and

opportunistic positioning. Advertisement messages are broadcast on 3 channels. These

are commonly given the numbers 37, 38 and 39 and are widely spaced at 2402 MHz, 2426

MHz and 2480 MHz respectively. Notably these channels have different mean RSSI levels

[8]. This is caused by multipath interference and uneven channel gain. Uneven channel

gain occurs as antenna usually do not have a standard response across the entire 2.4GHz

band this gain is exacerbated by the widely spaced channels. By default, our receiving

device operates a scan cycle which cycles over the three advertising channels, pausing to

listen to each one. Due to the unknown cycle and pause time it makes BLE unsuitable for

ToF based systems. We are also not guaranteed to be able to map an advertising packet

to the channel it was sent on.

Figure 2.8: The 40 BLE channels. BLE advertising only occurs on channels 37,38,39.

This figure was inspired by [8]

BLE scans at a receiver continue indefinitely and report advertisement packets as soon

as they are received. Due to this we form the current fingerprint from the advertising

packets received during a set time period (window duration). In each window we may

have advertising packets from any or all of the three channels.

The beacon advertising period or beacon interval is the time elapsed between adver-

tising packets being sent by a beacon. A short period uses more power, but sends more

packets.

The window duration is the time for which the receiver listens for advertisement pack-

ets before forming a window. If the window duration is greater than the beacon advertising
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period we may receive more than one advertisement packet for a single beacon per win-

dow. A longer duration may lead to an increased accuracy of reading, but the user may

have travelled further in that time. For example at a 1s window duration a person walking

at 1.5 m/s may have moved 15 m since the window start.

Advertising devices can be configured to be connectable or not. If a device is con-

nectable an advertising device allows a connection to be established. Advertising devices

can also be configured with directed advertising or undirected advertising. In directed ad-

vertising connection requests are accepted from known peer devices. While in undirected

connection requests are accepted from any peer device.

2.4 Gaussian Process

A Gaussian process is a collection of random variables, such that every finite collection

of those random variables has a multivariate normal distribution i.e. every finite linear

combination of them is normally distributed. They have advantage of representing the

uncertainty in the prediction, taking both sensor noise and model uncertainty into account.

2.4.1 Detail

For the derivation we follow the function-space view as detailed in [9].

Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} be the set of training samples drawn from a

noisy process.

yi = f(xi) + ϵ (2.8)

Where yi is a target value such that yi ∈ R, xi is an input sample from Rd and ϵ is a

zero mean, additive Gaussian noise in R with variance σ2
n.

A Gaussian process effectively estimates the posterior distributions over functions f

from the training data D. These distributions are represented in terms of the training

points. Gaussian processes assume that function values at different points are correlated.

This means that the covariance between two function values f(xp) and f(xq), depends

on the input values xp and xq. We represent this dependency with a covariance func-

tion(kernel) k(xp, xq). There are various choices of kernel function with the most widely

used being the homogeneous Gaussian kernel:

cov(f(xp), f(xq)) = k(xp, xq) = σ2
fexp(−

1

2l2
|xp − xq|2) (2.9)

In the Gaussian kernel, σ2
f is the signal variance and l is the length scale. These parame-

ters control the smoothness of the functions predicted by a Gaussian Process (GP). In the

Gaussian kernel we can see the covariance between function values decreases as the dis-

tance between the input values decreases. The Gaussian kernel function above calculates

the covariance function for direct function values xi, but we only have noisy observations

yi. Due to this we need to add Gaussian noise. Note how σ2
n is the Gaussian noise from ϵ.

cov(yp, yq) = k(xp, xq) + σ2
nδpq (2.10)
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δpq is one if p = q and zero otherwise. Now, generalising for an entire vector of input

values X and their corresponding observations values Y , the covariance becomes.

cov(Y ) = K + σ2
nI (2.11)

Where K is the n × n covariance matrix of the observed input values. This equation

denotes a prior over all functions and for any X we can generate a corresponding matrixK

such that we can sample a set of corresponding targets Y that have the desired covariance.

The sampled values are then jointly Gaussian with Y ∼ N (0, K + σ2
nI).

We want to be able to predict the function value y∗ for an arbitrary point x∗, with

relation to X, Y . From our kernel function, it follows the posterior over function values

is a Gaussian with mean µx∗ and variance σ2
x∗ .

p(y∗, x∗, X, Y ) = N (f(x∗);µx∗ , σ
2
x∗)

µx∗ = kT
∗ (K + σ2

nI)
−1
Y

σ2
x∗ = k(x∗, x∗)− kT

∗ (K + σ2
nI)

−1
k∗

(2.12)

Here k∗ is the n × 1 vector of covariances between x∗ and our n training points in

X. We can now get our predictive distribution for a noisy observation y∗ by adding the

observation noise:

p(y∗, x∗, X, Y ) = N (y∗;µx∗ , σ
2
x∗ + σ2

n) (2.13)

2.4.2 Learning Kernel Hyperparameters

We want to be able to learn the kernel parameters θ = (σ2
n, l, σ

2
f )based on the training data

X, Y . We estimate these parameters by maximising the log likelihood of the observations

Y . The limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm is a

popular algorithm for parameter estimation in machine learning [16]. The log likelihood

of the observations is given by:

log p(Y |X, θ) = −1

2
Y T (K + σ2

nI)
−1Y − 1

2
log |K + σ2

nI| −
n

2
log 2π (2.14)

This follows from the fact that the observations are jointly Gaussian. The log likeli-

hood can be maximised using an optimiser such as LBFGS. The algorithm initially starts

with an estimate of the optimal parameters value, then proceeds to iteratively refine the

estimate with a series of better estimates. It does this by using the partial derivatives

of the log likelihood to identify the direction of steepest descent and estimate the second

derivative of the log likelihood.

2.4.3 Application to signal strength modelling

Gaussian Processes have been applied successfully in the past to signal strength modelling

[9]. For each beacon we generate a predictive distribution or beacon survey map. We

train the kernel parameters using our input values X correspond to locations, and the
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observations Yb correspond to signal strength measurements obtained at these locations

for a specific beacon b.

Figure 2.9: Example Gaussian process map from the 30x30m outdoors evaluation.

To position a device we divide the area of interest into a grid of cells. We then calculate

the probability that a given fingerprint corresponds to each cell. To do this, we use the

Euclidean distance between the currently processing RSSI fingerprint and the map cells

estimated fingerprint. The map cells fingerprint is estimated using the Gaussian processes

which form maps between positions and RSSI values.

distance(B,m,M, c) =

√√√√ N∑
i=1

(mbi −Mbi(c))
2

N
(2.15)

The above equation calculates the estimated distance for a cell c, for the current

fingerprint m containing RSSI values for beacons B = b1, ..., bN and the set of Gaussian

process RSSI maps M . Once the distance is obtained a probability can then be estimated

for each cell.

p = exp(−distance2

2σ2
) (2.16)

Where σ is the standard deviation associated with the fingerprint measurement noise.

Note this is independent of any filtering.

Finally, we take the cell with the greatest probability as our position estimate.

2.5 Dataset

All training data for the algorithms was collected by hand at a variety of locations. The

experimental setup is explained in detail in Chapter 4.

2.5.1 Metrics for Evaluation

Several metrics will be used in the evaluation of the requirements. Note that yi is the

prediction of location, xi is the true value and n is the total number of estimates.
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Root Mean Square Error

Root Mean Square Error (RMSE) is the square root of the average of the squared errors.

This means that each error that is part of the RMSE is proportional to the size of the

squared error, hence larger errors have a larger effect on the RMSE. This lack of propor-

tionality to the error can make this metric hard to interpret. A smaller RMSE indicates

that a model performs better.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − xi)
2 (2.17)

Mean Absolute Error

The Mean Absolute Error (MAE) is a measure of errors between paired observations

expressing the same phenomenon. It is the arithmetic average of the absolute errors.

This measurement uses the same scale as the measured data which makes it easy to

interpret as any error can be thought of as a real world distance.

MAE =
1

n

n∑
i=1

|yi − xi| (2.18)

Confidence Intervals

Confidence intervals are a range of values about the mean in which we are n% sure that

the true population mean lies between these values. I will use a 95% confidence level due

to it being the standard in most positioning papers such as [8].

Below is the formula for a 95% confidence interval; Sn is the standard deviation of the

data and n is the number of samples.

CI95% = ±1.960
Sn√
n

(2.19)

2.6 Requirements Analysis

After reading up on relevant concepts and models in the field of radio positioning, the

criteria given in the project proposal (Appendix C) was revised and evaluated based on

their importance to the project and difficulty to implement. These requirements can be

seen in the table below in which the higher priority requirements are needed for a func-

tional project and the medium priority requirements are needed for a successful project.

The low priority requirements are not needed for the project to be a success, but are

extensions to the core of the project. All criteria that have been met, in this document,

have been clearly marked as completed.
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Requirement Priority Difficulty

A mobile Bluetooth beacon should be built High Low

A beacon can communicate with the target device High Medium

The system should be able to estimate the position of the

target device within a mapped area.

High Low

Implement the Gaussian process model High Medium

Implement the path loss model High Medium

Implement the K-Nearest Neighbour model High Low

Implement the Proximity Model High Low

Implement filtering of the RSSI values Medium Medium

Gaussian Model should outperform the K-nearest Neighbour

and Proximity Models in terms of mean absolute error for a

beacon density of 1/30m2

Medium Medium

Gaussian Model should have a lower mean absolute error less

than 5-10 m of the actual device position at a beacon density

of 1/30m2

Medium Medium

Gaussian Model should have an average standard deviation

of less than 5 m at a beacon density of 1/30m2

Medium Medium

The system’s accuracy should be evaluated at multiple beacon

densities

Low Medium

Implement the Weighted K-Nearest Neighbour model Low Medium

Implement a hybrid model using the Gaussian model com-

bined with another localisation technique

Low Medium

Ad hoc positioning e.g. place beacons as you go Low High

Table 2.1: Summary of the projects high-level success criteria

2.7 Tools Used

2.7.1 Hardware

For the project beacons needed to be constructed. Raspberry Pi 4Bs were used as they

are popular single board computers that are low cost, support Linux and have a Bluetooth

modem with support for Bluetooth 5.0 built in. The beacons were contained in boxes

to protect them from the environment. A 10,000 Mah powerbank was used to allow the

beacons to operate all day with needing to be recharged.

2.7.2 Software

A core part of the project was to allow the beacons to communicate with the target

device. The Linux Bluetooth stack BlueZ and corresponding Python module bluepy were

chosen due to there ability to run on both the Raspberry Pis and my personal Laptop.
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Python is the language of choice due to it having an available Bluetooth library and its

clear syntax. There are two main libraries which can implement Gaussian process models

in Python: gpflow and scikit-learn. Scikit-learn was chosen due to its regarded as being

easier to learn than gpflow and has more comprehensive documentation. The below table

summarises the tools used throughout the project and their main purpose.

Libraries & Programs Primary Usage

BlueZ Linux Bluetooth stack

Bluepy Interfacing with Bluetooth stack

NumPy Efficient mathematical computation python library

Scikit-learn Provides Gaussian Model

Matplotlib Plotting graphs of results

Git version control

GitHub Backup the project

Table 2.2: Libraries and Programs used for project development

2.8 Software engineering techniques

During the project, an iterative development model was adopted. This comprised of

development cycles of planning, design, implementation, testing and evaluation. This

makes it easy to adjust the models and parameters after each iteration leading to a better

final result, this is one of the most common agile techniques in industry [4].

Figure 2.10: A summary of when commits were made to main. The development can be

seen by peaks in the commits and the testing and/or evaluation took place in the troughs.

2.8.1 Development Environment

Most of the development for this project was done in the Visual Studio Code integrated

development environment. This was mainly chosen due to its high adaptability through

extensions and its support for Git version control. The equipment for this project was

provided by Dr Keshav, which include five Raspberry Pi 4s, five 10,000MaH powerbanks

and five 8 GB micro SD cards.
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2.8.2 Backup Strategy

Several measures were taken to ensure all parts of the project were secure. Git commits

was used for version control of the code and the project was pushed to GitHub for back

up. A recent version of the repository was stored physically on two USB sticks one stored

at the Cambridge Computer Lab and one stored in my personal residence. This follows

the 3-2-1 backup rule which states that for your data to truly be protected you need three

copies of the data, stored on two different types of media, with one backup copy being

stored offsite. The report was backed up similarly in its own repository.

2.9 Personal Starting Point

I have studied general regression as part of my degree. I otherwise had no experience in

regression models prior to starting the project. I have never studied any radio positioning

before and my knowledge of radio waves did not go beyond high school level. With regard

to localisation and filtering I attended the lectures for the “Introduction to Robotics”

course at the University of Cambridge which contains general details on these.

To learn more, I read through lots of articles and papers, only a few of which are

referenced in this document. Additionally, I learnt how to use BlueZ and bluepy, which

comprise the Linux Bluetooth stack and Python package.
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Chapter 3

Implementation

This chapter takes you through the development of the project to its current form. It

details the hardware and its configuration, then how the various models to conduct

indoor positioning were implemented It also gives an overview of the data-processing

required. The next chapter will compare these models to each other.

3.1 Hardware Implementation

This section provides details on the hardware used in the project and how the beacons

were programmed.

3.1.1 Hardware

To construct the positioning system, I constructed 5 beacons and a target device.

For the beacons themselves I was able to obtain 5 Raspberry Pi 4Bs each with a

corresponding MicroSD card and 10,000Mah powerbank. Raspberry Pi 4Bs were chosen

due to their customisability, affordability and ability to support Bluetooth 5.0.

For the target device a laptop running Ubuntu 20.04 was used. This laptop had a

Bluetooth adapter which supported Bluetooth 5.1. However, any Linux based device able

to run BlueZ and Python should be sufficient (e.g. another Raspberry Pi 4B).

(a) The beacon boxed (b) The beacon unboxed

Figure 3.1: A look at a single beacon

Criterion met: A mobile Bluetooth beacon should be built.

21
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3.1.2 Configuration for positioning

The beacons themselves had to be configured so that they broadcast the Bluetooth ad-

vertising packets correctly. To do this the advertising.bash script was executed on

each beacon when it is turned on. This script executes some Bluetooth LE commands[3]

which perform the following functions:

1. Set the advertising rate to less than 100ms.

2. Set the Bluetooth channel to be used at 38

3. Set the advertising mode to non-connectable

The beacon advertising period was set to be less than 100ms then a window duration

of 1s was used to aim for at least 10 packets a window. This was because in the Harle,

Faragher paper, at a rate of 10Hz, the error was negligible compared to a rate of 20Hz

[8]. The channel was set to 38 to attempt to help mitigate the uneven channel gain

and multipath interference caused by having all 3 channels enabled. The non-connectable

mode was used as some systems can only report a single observation per window otherwise.

Criterion met: A beacon can communicate with the target device.

3.2 Positioning Models

This section describes the implementation of the positioning algorithm and the various

models used to estimate the position.

3.2.1 General Positioning Algorithm

Figure 3.2: The general live positioning algorithm
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3.2.2 Proximity

The proximity based algorithm is quite simple it selects the beacon with the strongest

RSSI value from the current measurement and then co-locates the user with it. It is also

equivalent to using KNN with k=1.

Criterion met: Implement the Proximity Model.

3.2.3 K-Nearest Neighbours

The k-Nearest Neighbours (KNN) algorithm uses k = 3 and takes the three strongest

signals and their beacon positions, then uses weighted centroid localisation to estimate

the target devices position. The Weighted Centroid Localisation (WCL) method estimates

the target position by calculating the weighted centroid of the coordinates of the beacons.

The weights are assigned such that they are inversely proportional to RSSI values. This

method only requires the beacon’s positions and no additional training. This is based on

the KNN implementation in the Harle, Faragher Paper [8].

wi =
1

ri
(3.1)

Criterion met: Implement the K-Nearest Neighbour model.

3.2.4 Path Loss

In the propagation or path loss model, we initially create a linear path loss model for

each beacon. This model allows us to predict distance from a beacon to the target device

(section 2.1.1). For a fingerprint the distance to each beacon is estimated. The target

devices position is then estimated using the Min-Max method discussed in section 2.1.4

with the 3 smallest distances and their beacons corresponding location. This method

estimates the target devices position by constructing bounding boxes around each selected

beacon with the box’s length being proportional to the estimated distance. The center of

the intersection box is then the estimated target position.

For each beacon the initial point is chosen from the training data to be as close to 1

m as possible this is because 1 m is a commonly used initial value for d0, but any point

can be used.

d = d010
r0−r
10γ (3.2)

Criterion met: Implement the path loss model.

3.2.5 Gaussian Process

This uses the Gaussian process to produce the cell map then co-locates to the cell point

with the highest probability which passes the variance/standard deviation threshold. I

defined this threshold using the distribution of the cells standard deviations(std). If the

cells personal std was more than the sum of standard deviation and median of all the
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cells then it would be discarded. This model can be used in two ways: in a stationary or

tracking mode. In the stationary mode, the model has a uniform prior, meaning there are

no limits on the location of the target device. While in the tracking mode a non-uniform

prior is used, it is assumed that the target device is within 1 cell of the previous calculated

position estimate.

Initialisation

In the initialisation portion of the algorithm. The Gaussian process regression models

are fitted for each beacon, this uses the training data collected in the offline phase which

maps points to RSSI values.

Cell Map

The cell map is a data structure which is used to estimate the position of the target

device. It breaks down the area of interest into cells. These cells are uniform with the

map providing the cell size (or length). A smaller cell size means the area has more cells

and can lead to more accurate results, but this requires more computation (if we halve

the cell size we quadruple the number of cells).

Figure 3.3: An example cell map in the University of Cambridge’s Intel Lab. The Green

dots represent beacons and the black dots represent the cell centers.

Calculating the cell probabilities

For each cell we calculate the probability that it contains the target device. To do this

we calculate an estimated distance from the cell center to the target device. This is done

by using the Gaussian processes to predict the RSSI value for each beacon at each cell

center. This is then passed into the distance function to obtain an estimate. In the below

equation B are the beacons, m is the current RSSI measurement and M is a function

which returns the predicted RSSI for a beacon at the current cell center c.
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distance(B,m,M, c) =

√√√√ N∑
i=1

(mbi −Mbi(c))
2

N
(3.3)

The probability would then be calculated with the equation below. In the implementa-

tion the negative logarithm of p is used as it keeps the values more tractable and removes

the requirement for the list of sorted probabilities to be reversed. The standard deviation

used is the fingerprint measurement noise and is independent of filtering. I set this to 3.2

as this was the standard deviation of the RSSI values in the RSSI over time experiment

(Appendix 2).

p = exp(−distance2

2σ2
) (3.4)

3.2.6 Algorithm

The algorithm is as follows:

1. Initialise the cell map and created Gaussian process regression models

2. Calculate cell probabilities

3. Discard cells which surpass the variance/standard deviation threshold.

4. Select most likely cell’s center as the estimated position

Prior

In the Gaussian model we can add a prior to the probability, this may be local or uni-

form. A uniform prior indicates each iteration of the positioning is independent while

a local prior assumes the next position is close to previous predicted position. This is

implemented by only allowing the next estimate to be a neighbour or the same cell as the

previous iteration, but this can vary based on implementation with some using models

which attempt to estimate how the target device will move. Having a local prior may

lead to better results when trying to converge on a single position.

Criterion met: Implement the Gaussian process model.

3.2.7 Gaussian Hybrid (Extension)

The original Gaussian process algorithm, uses the Gaussian process to produce a proba-

bility cell map then locates to the cell center point with the highest probability. This is

similar to how the proximity algorithm determines the position, but instead of using the

current measurement it uses the cell probabilities. In the Gaussian process algorithm a

cell’s probability gives an indicator of how close the algorithm believes the true value is

to the cell center. The cell centers closest to the actual point would be expected to have

the highest probability then. It follows that we may be able to position more accurately

in a cell by using the position and probability information from multiple cells. This forms
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the basis behind the Hybrid Gaussian algorithms which locate using the 3 most probable

centers and there respective probabilities. Both the KNN and Bounding Box Gaussian

Models were developed on my own and my contribution from this project.

Criterion met: Implement a hybrid model using the Gaussian model combined with

another localisation technique.

KNN Gaussian (Extension)

The KNN Gaussian method proceeds similarly to the regular Gaussian method, except the

step where it locates to the nearest cell center (step 4). Instead, the KNN Gaussian model

uses weighted centroid localisation technique discussed in section 2.1.3 to estimate the

position. This method estimates the target position by calculating the weighted centroid

of the coordinates of the nearest k cell centers. In the Gaussian method cell probabilities

are proportional to the confidence that a cell center is near the target device, using this

fact our we create our weights. (Note these weights become wi = 1/pi when adjusted for

the logarithm of the probability).

wi = pi (3.5)

Bounding Box Gaussian (Extension)

The Min-Max/Bounding Gaussian method proceeds similarly to the regular Gaussian

Method, except the final step where it locates to the nearest cell center (step 4). Instead,

the Min-Max Gaussian method uses the Min-Max method discussed in section 2.1.4 to

estimate the target devices position. This method estimates the target devices position

by constructing bounding boxes around each cell center with box length proportional to

the probability. The center of the intersection box is then the estimated target position.

The values were transformed similarly to the weights in the Gaussian KNN algorithm

with wi = pi becoming wi = 1/pi when adjusted for the logarithm of the probability.

3.2.8 Weighted KNN (Extension)

The Weighted KNN method is one of the most popular choices in the design of finger-

printing indoor positioning systems based on WiFi received signal strength (RSS) [7].

This method is a modified version of the k nearest neighbours algorithm. We utilise all

the training data in this method. This method compares the input measurement to all

training data points to produce a distance for each point. We then estimate the position

by using weighted centroid localisation on the known points corresponding to the k small-

est distance values. Distance was calculated using the Euclidean distance metric. This

metric was used as it is a measure of the true distance between two points in euclidean

space. Weights for the points can be formed from the reciprocal of the distance values.

wi =
1

di
di =

√√√√ 1

n

n∑
i=1

(yi − xi)
2 (3.6)
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Criterion met: Implement the Weighted K-Nearest Neighbour model.

3.3 Obtaining and processing the measurement data

The positioning algorithms require RSSI measurements to predict the position. These

form the basis for the training data and live data. As discussed in section 2.3, advertise-

ment packets are split into windows depending on the time they are received. The RSSI

measurements in a window are then processed to produce the final measurement. In this

processing we want to reduce the possibility of multipath interference. To counter this we

can employ various strategies including taking the median of the window’s measurements.

The training data was constructed by taking the quantiles of a window of measurements.

This enabled the data to better represent the variance in RSSI values.

3.3.1 Filtering

As discussed in section 2.1.4 filters can be used to reduce statistical noise and other in-

accuracies in this case a filter is applied to a beacons RSSI values. Several filters were

implemented including the simple moving average filter, simple median filter and Kalman

filter. Different filters may be more appropriate in different situations. For example my

implementation of the Kalman filter may be more suitable for stationary deployments as

it assumes little movement this makes it unsuitable in a tracking environment where the

RSSI value is changing fast. In this case the median filter may be a more appropriate

option. Its evident though by Figure 3.3 that any filter provides less volatile measure-

ments. In the evaluation a Kalman filter is used on the measurements this was due to the

evaluation being focused around stationary points. For the filter the process noise was set

to 0.008 [6] and the measurement noise was set to the variance of the RSSI measurements.

Figure 3.4: Filtering comparison for when applied at the window mean RSSI experiment.

Note: The mean was emitted for brevity and performs similarly to the median filter.
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Criterion met: Implement filtering of the RSSI values.

3.4 Navigating the Repository

As mentioned in section 2.9, I learned how to use bluepy through the documentation [2].

This provided several examples which I was able to adapt and build on top of. The scikit-

learn module [18] provides the Gaussian process regressor and a method to optimise the

hyperparameters, I learnt how to use the module from the documentation which contains

examples [1].

There are many parts which make this project work. The code has been split into

several folders based on their use. For example, the code for localisation models is inside

the “Models” folder. On the top level of the directory, there are the files that are designed

to be run directly from the command line. A detailed structure can be seen below:
/

data/ ...........................................Data obtained in the project
training/ ....................................Files in the training dataset
evaluation/ ................................Files in the evaluation dataset
experiment/ ..........................Data from various RSSI experiments
results/ ................................................Example outputs

src/ .................................................The Python source code
Models/ ...................................Code for the localisation models
Processing/ ..............................Code for filtering measurements
Utils/ .............................Code for utility methods such as file IO
plotting.py .........................Run-able file used for plotting graphs
measurement.py ..Run-able file used for gathering/processing measurements
evaluation.py .........Run-able file used for evaluating localisation models
localisation.py ............Run-able file used for running localisation live

advertising.bash ...........................Bluetooth script run on beacons
install.bash ....................................Install script for the project
requirements.txt ........................List of Python project dependencies



Chapter 4

Evaluation

This chapter gives a detailed look at the results of the different positioning algorithms

with respect to the evaluation metrics. It also contains a look at the effect of filtering and

beacon density on accuracy.

4.1 Experimental Setup

I evaluated the project in two types of environment, outdoors and indoors. For the

indoor experiment the Intel laboratory located in the Computer laboratory, University of

Cambridge was chosen. This environment was chosen as it was a relatively open space

which has lots of multipath interference from its electronic devices and architecture this

should produce a similar environment to a rainforest. The outdoors experiments were

conducted in open green spaces around the West Cambridge site.

To conduct a fair experiment several variables were controlled. All measurements were

taken by hand at a height of 1 m above the ground. The position and rotation of beacons

were kept constant during the tests to avoid unwanted effects. Beacons were also always

placed symmetrically around the mapped area on the edges. All 5 beacons were used in

all the environments. All the random variables were seeded to ensure that that results

are reproducible. This was used in the Gaussian Process Model and Kalman Filters.

4.1.1 Obtaining the Ground Truth

For the indoor test in the intel lab the ground truth was obtained from the carpet grid

which covers the floor. Each tile was 0.6 x 0.6 m which could then be used to calculate

the actual ground truth.

For the outdoors tests no grid was available, so I had to construct one to do this I used

a measuring wheel. The wheel I used was precise to the nearest centimetre. To construct

the grid markers were placed on the ground with there position from the origin measured

3 times to ensure accuracy.

29
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(a) Inside: Intel Lab has carpet tiles

(b) Outside:The measuring wheel

Figure 4.1: Ground Truth sources

4.1.2 Training Data

The training data was obtained by taking a single measurement window (all the RSSI

values received in 1 second) at a uniform grid in the mapped space. The key values

for each environment are detailed below. The grid cell length is the distance between

measurement points in a grid. The Measurement density is the average number of training

measurements taken per metre squared, and the beacon density is the number of beacons

per metre squared.

Environment Grid Cell Length

(m)

Measurement

Density (m−2)

Beacon Density

(m2)

Indoor(17.2x13.2m) 1.2 0.39 1/45

Outdoor(15x10m) 2 0.31 1/30

Outdoor(30x30m) 2.5 0.15 1/180

Table 4.1: Environment Measurement Distances

4.1.3 Evaluation Data

For the evaluation data random points within the mapped area were generated. For each

point 5 RSSI window readings were taken to establish an average accuracy for the point.

4.2 Measuring the Criteria

As discussed in section 2.5.1 two different metric of evaluation will be used: root mean

square error (RMSE) and mean absolute error (MAE). These metrics each have a 95%

confidence intervals on all their values. For each environment the metric was run on the

results of the localisation algorithm for each model. The standard deviation was also

computed on the error results. These results can be used to evaluate their respective
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success criteria quantitatively. While the beacon density evaluation is more qualitative, I

will pull observations from the different metrics to draw conclusions.

4.3 Analysis of Results

This section discusses the results of the models for the various environments and con-

tains reference to various tables and graphs in this section. If a graph exists without a

corresponding table in this chapter the table will be available in appendix A.

In general the results show that all the Gaussian methods outperform the KNN, Prox-

imity and Propagation by a clear margin. Additionally, filtering and adjusting the Gaus-

sian models parameters can lead to better performance.

Criterion met: The system should be able to estimate the position of the target device

within a mapped area.

4.3.1 General Model Comparison

This section is a discussion of the general system performance in relation to the two

environments and the evaluation metrics. These evaluations are all done with a Gaussian

cell size of 0.25 m and a uniform prior.

Indoors

In this environment the Gaussian Models outperform the other tested models, the hybrid

Gaussian models also provide an increase in performance (around 0.4 m) over the Gaussian

Model though this performance increase is within margin of error. Surprisingly, the

WKNN model performs as well or worse than the baseline localisation algorithms, we

would expect it to perform closer to the Gaussian algorithms due to its use of additional

data. The standard deviations are all in a similar range apart from the WKNN value of

3.18 this value is large given MAE value of 4.25 m ± 0.44 this suggests there was a lot of

variance in the accuracy of the WKNN model which may explain it’s lower than expected

accuracy. These results are demonstrated in the table 4.2 and figure 4.2.

Model MAE (m) Sn (m) RMSE (m)

KNN 4.57 ± 0.36 2.56 5.24 ± 4.37

Proximity 4.32 ± 0.28 2.03 4.78 ± 3.27

Propagation 4.15 ± 0.31 2.26 4.72 ± 3.31

Gaussian 3.72 ± 0.35 2.5 4.48 ± 3.84

Gaussian KNN 3.31 ± 0.30 2.11 3.95 ± 2.55

Gaussian MinMax 3.36 ± 0.29 2.15 3.97 ± 2.55

WKNN 4.25 ± 0.44 3.18 5.31 ± 5.42

Table 4.2: Table of results for Inside Approximately 1/40m2 density. cell size = 0.25 and

a uniform prior
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Figure 4.2: Plot of results for Inside Approximately 1/40m2 density. With a cell size =

0.25 and a uniform prior

Outdoors

To measure the general use outdoor performance the 15x10m grid was used. In this

environment we can see that the Gaussian based and WKNN models outperform the

other models significantly. This is expected, due to the additional training data they use

in their predictions. In my results the Gaussian hybrid models perform best with the

Gaussian KNN variant having a slightly better MAE and RMSE values though taking

into account margin for error they all perform similarly. If we assume the error is normally

distributed then the Gaussian model has accuracy of at least 5.42 m 95% of the time.

When comparing the outdoors environment to indoors, a smaller 15x10m grid was used

this was to fulfil the success criteria, due to the higher beacon density the measurement

grid size was increased from 1.2 m indoors to 2 m outdoors to make the two environments

roughly comparable though this is only the case for algorithms which use training data.

In the case of the algorithms without training data we would expect this to lead to better

performance outdoors due to the higher beacon density.

When comparing outdoor and indoor results we would expect the outdoor results

to perform better due to less electromagnetic interference. A surprising result was the

propagation model having worse performance outdoors; you would expect that outdoors

there would be less interference and hence follow the model more accurately. However,

this does not seem to be the case. In general when looking at the Gaussian and WKNN
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models they perform better than indoors as expected. These results are demonstrated in

the table 4.3 and figure 4.3.

g

Model MAE (m) Sn (m) RMSE (m)

KNN 4.19 ± 0.32 2.02 4.65 ± 2.81

Proximity 3.78 ± 0.23 2.10 4.05 ± 2.10

Propagation 5.33 ± 0.29 1.82 5.63 ± 3.17

Gaussian 2.24 ± 0.25 1.59 2.74 ± 2.51

Gaussian KNN 2.17 ± 0.26 1.62 2.71 ± 2.51

Gaussian MinMax 2.19 ± 0.26 1.62 2.72 ± 2.53

WKNN 2.32 ± 0.30 1.88 2.99 ± 2.86

Table 4.3: Table of results for Outside 1/30m2 density. With a cell size = 0.25 and a

uniform prior

Figure 4.3: Plot of results for Outside 1/30m2 density. With a cell size = 0.25 and a

uniform prior

Criterion met: Gaussian Model should outperform the K-nearest Neighbour and

Proximity Models in terms of mean absolute error for a beacon density of 1/30m2.

Criterion met: Gaussian Model should have a lower mean absolute error less than

5-10 m of the actual device position at a beacon density of 1/30m2.

Criterion met: Gaussian Model should have an average standard deviation of less than

5 m at a beacon density of 1/30m2
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4.3.2 Gaussian Parameters

The Gaussian model has a couple of parameters which can affect the performance; the

cell size and prior distribution.

Effect of Cell Size on Gaussian Model

As the cell size decreases the number of total cells increases leading to a finer grid of

points which the Gaussian process is evaluated at. Due to this we would expect a more

accurate system up to an optimal point, but this comes at the cost of performance.

Figure 4.4 indicates a correlation between cell size and accuracy, but it also includes a lot

of variance in its results indicating that the cell size may need to be tweaked for individual

environments to provide the best accuracy to performance ratio.

Figure 4.4: MAE for Gaussian Process Model for varying cell size on the indoor environ-

ment. (Table: Appendix A)

Local vs Uniform Prior

The choice of prior is dictated by the type of tracking. By assuming a local prior we

envision that the target device will stay close to its current position. In my results this

can provide improvements in results such as in the indoor test (figure 4.5), but it can

also have no or even a detrimental effect as shown Gaussian results and in the outdoor

results(Appendix A). Introducing a more complex prior than the nearest neighbour cell

may lead to better results this could include creating a more advanced motion model.
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Figure 4.5: MAE prior comparison for the Indoor environment. (Table: Appendix A)

4.3.3 Impact of Filtering

In general filtering leads to an improvement in the accuracy of the models as expected,

though it can also have a detrimental effect in some cases this may be caused by the

filtered signal being sluggish and not adapting fast enough to a change in the RSSI value.

Figure 4.6: MAE filter results comparison for the 15x10m outdoor environment. (Table:

Appendix A)
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4.3.4 How density affects performance (Extension)

As the density of beacons decreases we have less information in each fingerprint, this leads

to a reduced accuracy in the localisation system. The system was evaluated outside at

2 locations, 10x15m and 30x30m the aim of this was to see how decreasing the density

affects the performance of the localisation. For each of the locations four beacons were

placed evenly around the location with a beacon at the center. This center beacon could

be removed from the training data to produce localisation results with a lower density of

results. It should be noted that the two outdoor environments had different measurement

distances (Table 4.1) of 2 m and 2.5 m. While this makes the environments not empirically

comparable it was done due to the practicalities of surveying such a large space.

Density Comparison

15x10m Outdoors 30x30m Outdoors

Model 1/30m2 1/37.5m2 1/180m2 1/225m2

Gaussian 2.24 m ± 0.25 3.51 m ± 0.37 8.34 m ± 0.85 8.74 m ± 0.89

Gaussian KNN 2.17 m ± 0.26 3.17 m ± 0.31 6.97 m ± 0.75 7.22 m ± 0.64

Gaussian MinMax 2.19 m ± 0.26 3.10 m ± 0.30 6.81 m ± 0.70 7.38 m ± 0.63

KNN 4.19 m ± 0.32 3.67 m ± 0.34 7.03 m ± 0.48 7.46 m ± 0.57

Propagation 5.33 m ± 0.29 5.39 m ± 0.32 8.73 m ± 0.52 9.26 m ± 0.61

Proximity 3.78 m ± 0.23 5.02 m ± 0.40 8.28 m ± 0.51 9.12 m ± 0.56

WKNN 2.32 m ± 0.30 2.45 m ± 0.26 18.99 m ± 1.40 20.95 m ± 1.34

Table 4.4: Table of MAE results for different outdoor densities

It can be seen in table 4.4 that as expected in general a higher beacon density leads

to a lower accuracy. When comparing different densities within the same environment

the results always decrease in accuracy except for KNN which increases in 15mx10m, but

this may just be in margin of error. When drawing observations between the different

environments its prevalent that accuracy does decrease significantly, with the KNN and

hybrid Gaussian models performing the best. Notably is the performance of WKNN at the

lower densities which has double the error of the other algorithms this is likely caused by

the additional training data possibly misleading the model. For the 30x30m environment

the best algorithms only perform as well as KNN (within margin of error), this could

suggest that there is a density were a fingerprint doesn’t have enough information for

the additional training data to lead to a lower error. This additional data may even be

detrimental to accuracy, in the case of WKNN the MAE is more than twice than the KNN

MAE. To conclude as expected increasing the density of beacons increases performance,

though more work needs to be done to investigate how to place beacons optimally within

a space.
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(a) Outdoors 15mx10m (b) Outdoors 30x30m

Figure 4.7: Outdoor locations

Criterion met: The system’s accuracy should be evaluated at multiple beacon densities.

4.3.5 Improving Performance

To improve performance enabling a local prior can helps if the mobile device is in a

constant position. Also, implementing a particle filter with a more advanced motion

model for the position may also lead to better results. Increasing the density of beacons

also leads to an increased performance, though these must be placed in area with low

coverage to have the best effects.
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Chapter 5

Conclusions

This chapter summarises the project with a discussion of what went well, what lessons I

have learnt and a few thoughts on applications of this project and potential ways to

improve upon it.

Working on this project has been an enjoyable experience and has given me the oppor-

tunity to learn about localisation techniques and radio signals. I have particularly enjoyed

working with the Raspberry Pis with this being the first time I have built a system relying

on communication from other devices.

5.1 Project Achievements

As set out in previous chapters, this project has been a success in that it has met all of the

high and medium priority criteria. It has also met the extension criteria for implementing

the additional models and evaluation of the system at multiple densities.

My first step was to build and program the Bluetooth beacons to send out the ad-

vertising packets. This proved useful as once the prototype was built I was then able to

experiment how RSSI was affected by various factors. Next I developed the localisation

system itself, the main model is the Gaussian process model, this produces better re-

sults than the baseline models both indoors and outdoors. These results are a promising

indicator that the model may be able to be applied to mapping in the rainforest.

I also designed and implemented the hybrid Gaussian models as an extension. These

models produced more accurate results than the regular Gaussian model in general and

are my contribution from this project. The WKNN model was also implemented as

an extension along which provided as good or inferior results to the Gaussian models.

Also, an investigation into how beacon density affected the accuracy of the system was

conducted.

5.2 Lessons Learnt

I have enjoyed experimenting to see the effects of different objects on RSSI value, this was

quite illuminating in learning how we would construct a positioning system which took

advantage of these facts. Another important lesson I have learnt is how Bluetooth Low
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Energy works and how to use it. This had helped my general understanding of wireless

communication and I have no doubt the knowledge will be useful in the future.

There were also a few oversights made in the development of the project. In particular,

estimating the time to collect measurement and evaluation data. This had to be done by

hand and proved to be a colossal task on my own with the 30x30m area alone requiring

over 144 training points. In future, I would enlist the help of someone to reduce the

workload.

I was unable to complete the final extension success criteria. This involved creating

ad hoc positioning this was not completed due to time constraints and the complexity of

the extension.

5.3 Future Development

Deploying the project in a real-world environment faces several challenges the main being

scalability. To achieve the beacon density required for accurate localisation its likely lots

of beacons would be needed. A hybrid system with some areas of high and low beacon

densities may give the advantage of a larger scale without the entire area needing to be

mapped.

Despite this the project has been a success and met all of the original success criteria,

there are still some ways I can see that the system being improved in the future. I have

summarised a few possible improvements below:

1. See how the models performs in an actual rainforest. This was not possible due to

the limitations on where the system could be tested, but this could provide good

insights into how the model could be improved and perform.

2. Ad hoc Positioning: Placing the beacons down as you go ”like breadcrumbs”. This

is effectively Simultaneous localisation and mapping (SLAM) using radio signal

strength, this is a difficult problem outdoors due to the lack of landmarks which

are present indoors (i.e. walls). Without GPS it is likely a system would also likely

suffer from divergence over time.

3. Consider using UWB beacons for a localisation system. The cost of UWB is likely

to decrease in time which may make it a more suitable candidate to build a system

with due to its increased accuracy.

4. Using a DNN for to produce the RSSI map. This may produce better results than

the Gaussian models. Problems could arise from gathering enough training data for

this approach though.

5. Automatic mapping: given the area have a robot map the area.
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Appendix A

Tables

Filtering

All results were collected with uniform prior and a cell size of 0.25.

Model Filtered (m) Unfiltered (m)

Gaussian 3.72 ± 0.35 4.09 ± 0.4

Gaussian KNN 3.33 ± 0.29 3.41 ± 0.32

Gaussian MinMax 3.32 ± 0.3 4.02 ± 0.39

KNN 4.57 ± 0.36 4.55 ± 0.36

Propagation 4.15 ± 0.31 4.08 ± 0.28

Proximity 4.32 ± 0.28 4.71 ± 0.36

WKNN 4.25 ± 0.44 4.42 ± 0.42

Table A.1: MAE values Indoor Filtering table

Model Filtered (m) Unfiltered (m)

Gaussian 2.24 ± 0.25 2.42 ± 0.28

Gaussian KNN 2.17 ± 0.26 2.34 ± 0.25

Gaussian MinMax 2.19 ± 0.26 2.33 ± 0.25

KNN 4.19 ± 0.32 4.01 ± 0.33

Propagation 5.33 ± 0.29 5.31 ± 0.29

Proximity 3.78 ± 0.23 3.88 ± 0.24

WKNN 2.32 ± 0.3 2.56 ± 0.31

Table A.2: Outdoor 10x15 Filtering table
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Prior

All results were collected with filtering enabled and a cell size of 0.25.

Model Uniform (m) Local (m)

Gaussian 3.72 ± 0.35 3.74 ± 0.37

Gaussian KNN 3.31 ± 0.29 3.03 ± 0.32

Gaussian MinMax 3.32 ± 0.3 3.25 ± 0.32

KNN 4.57 ± 0.36 4.54 ± 0.36

Propagation 4.15 ± 0.31 4.02 ± 0.3

Proximity 4.32 ± 0.28 4.56 ± 0.36

WKNN 4.25 ± 0.44 4.38 ± 0.44

Table A.3: Indoor Prior table

Model Uniform (m) Local (m)

Gaussian 2.24 ± 0.25 2.31 ± 0.28

Gaussian KNN 2.17 ± 0.26 2.19 ± 0.26

Gaussian MinMax 2.19 ± 0.26 2.22 ± 0.26

KNN 4.19 ± 0.32 4.19 ± 0.34

Propagation 5.33 ± 0.29 5.33 ± 0.29

Proximity 3.78 ± 0.23 3.86 ± 0.24

WKNN 2.32 ± 0.3 2.39 ± 0.29

Table A.4: Outdoor 10x15 m Prior table
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Cell Size

Cell Size MAE (m)

0.2 3.77 ± 0.43

0.3 3.62 ± 0.38

0.4 3.66 ± 0.41

0.5 3.77 ± 0.4

0.6 3.78 ± 0.38

0.7 3.67 ± 0.39

0.8 3.65 ± 0.35

0.9 4.51 ± 0.41

1.0 4.05 ± 0.39

1.1 3.72 ± 0.38

1.2 3.4 ± 0.33

1.3 3.91 ± 0.34

1.4 4.33 ± 0.43

1.5 3.47 ± 0.34

1.6 4.67 ± 0.4

1.7 3.7 ± 0.35

1.8 4.57 ± 0.39

1.9 4.31 ± 0.4

2.0 4.42 ± 0.37

2.1 4.51 ± 0.38

2.2 4.52 ± 0.39

2.3 4.2 ± 0.38

2.4 4.26 ± 0.47

2.5 4.51 ± 0.47

2.6 4.38 ± 0.44

2.7 4.16 ± 0.36

2.8 4.64 ± 0.4

2.9 4.23 ± 0.39

3.0 4.22 ± 0.33

3.1 4.49 ± 0.36

3.2 4.5 ± 0.38

3.3 5.15 ± 0.42

3.4 5.48 ± 0.41

3.5 5.3 ± 0.41

3.6 4.51 ± 0.42

3.7 5.1 ± 0.44

3.8 5.64 ± 0.56

3.9 4.99 ± 0.4

Table A.5: Indoor Cell Size Table
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Appendix B

Experiments

A couple of experiments were carried out to investigate how RSSI values changed under

certain conditions.

RSSI over time

In this experiment how RSSI changed over time was investigated to conduct this, a beacon

and target device were kept at a constant distance of 1 m from each other and the received

RSSI values from the beacon recorded for 1000 seconds. The raw data can be found in

the results/test_measurement.csv file in the repo.

Metric Value

Mean (dBm) -60

Median (dBm) -59

Sn 3.2

Table B.1: Over time results data

Rotation

In this experiment how rotation effected RSSI was investigated. To conduct this, a beacon

and target device were kept at a constant distance of 1 m from each other and the received

RSSI values from the beacon recorded for 1000 seconds. With the only changing factor

being the rotation of the beacon. The raw data can be found in several files being located

at results/test_rotation_DEGREE_measurement.csv in the repo.
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Introdution and Description

In rainforests, GPS signals only have a typical accuracy of around 10-30m due to harsh

environmental conditions such as the thick forest canopy. This accuracy is insufficient for

fieldwork, so this project proposes implementing an indoor wayfinding technique in an

outdoor context to achieve better accuracy.

This radio-based positioning technique involves setting up an area of radio beacons,

then using their Received Signal Strength Indicator (RSSI) to determine the position of

a device within the range. The position will be calculated by using a two-phase radio

frequency based fingerprinting method. In the first phase, we train the system offline at

set reference points. We then use this data in the second phase to determine the position

of the device.

Bluetooth Low Energy (BLE) will be used due to it being much more accessible than

alternatives such as Ultra-wideband (UWB). This is due to BLE being available in devices

such as old smartphones and affordable microcontrollers (i.e. raspberry pi).

The construction of the Bluetooth beacons has been considered and will consist of a

microcontroller with Bluetooth low energy combined with a portable power device. The

microcontroller will likely be a Raspberry Pi. Raspberry Pis are affordable microcon-

trollers with inbuilt Bluetooth modules in all mainline models released after the 3b. The

rainforest will lead to the microcontroller being exposed to harsh environmental condi-

tions. Due to this the microcontroller will need to be stored in a decently sealed box to

help protect against the humidity of rainforests.

To evaluate the effectiveness of the system, an experiment will be carried out where

the accuracy of the system is evaluated. The evaluation will consider the environmental

conditions the system is exposed to, such as humidity, to see how this affects the accuracy

of the system.

Starting Point Statement

A paper exists which describes using Bluetooth low energy for indoor positioning with

Bluetooth based devices [1].

In addition, in 2020 a UROP project was conducted this summer evaluating the

feasibility for different low-cost outdoor location determination methods for rainforests;

this study contains a brief look at general radio-based solutions but doesn’t investigate

Bluetooth-based beacon solutions.

Description of the substance and structure of the

project

Major Work Items

• Beacon Construction

• Training Algorithm
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• Positioning Algorithm

The training algorithm depends on the beacons existence and the positioning algorithm

depends on the training algorithms produced data, but they can be developed indepen-

dently.

Project Success Criteria

• A beacon is constructed which uses Bluetooth to communicate with a Bluetooth-

enabled device.

• The system should determine the position of the device.

• The system should be accurate within 5-10m of the actual device position.

• The system should have a standard deviation of less than 10m.

Project Plan

The project will be completed using an agile methodology employing scrums with two-

week sprints to complete the project.This will allow an easier evaluation of current progress

and help focus areas to divert attention too.

Timeline

1. Preparatory Work: Research into relevant papers 18/10/21 - 25/10/21

2. Preparatory Work: Build Beacon 25/10/21 - 08/11/21

Milestone: Create Prototype Beacon

3. Practical Work: Writing code to connect a beacon and the device and obtain RSSI

value 08/11/21 - 06/12/21

Milestone: Connect a beacon to the device

5. Practical Work: Connecting multiple beacons to the device at once to obtain their

RSSI values 06/12/21 – 20/12/21

Milestone: Connect multiple beacons to the device

6. Practical Work and Complete Progress Report: Implement the training phase

20/12/21 - 03/01/22

7. Practical Work: Implement the location determination algorithm on the device

03/01/22 – 31/01/22

9. Practical Work: Physical evaluation of system 31/01/22 – 28/02/22 Milestones:

• Train the system for a set layout indoors
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• Determine the location of a device indoors

• Train the system for a set layout outdoors

• Determine the location of a device outdoors

11. Writing Dissertation: Writeup of development 28/02/22 – 14/03/22

12. Writing Dissertation: Writeup of algorithms 14/03/22 – 28/03/22

13. Writing Dissertation: Evaluation Writeup 28/03/22 – 11/04/22

Risk Management

All the project code will be stored in a git repository which will be regularly committed

to. This will ensure that the code is backed up sufficiently. The code should be able to

be developed on an MCS machine in the case of a personal machine failure. In the case

of a beacon failure, the tests will have to be evaluated on a smaller space if an alternative

cannot be sourced.

Resource Declaration

This project will require the construction of Bluetooth beacons; these will likely be Rasp-

berry Pis with a Bluetooth module (3b, 3b+, 4 or zero w) this is due to their affordability

and low power usage. These will be combined with portable power sources to create the

beacons. A device to locate will also be required which will be a portable device with

Bluetooth (portable computer or phone). These will be provided by Dr S Keshav.

In addition to this, I will be developing the project on my personal laptop. I accept

full responsibility for this machine, and I have made contingency plans to protect myself

against hardware and/or software failure.
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